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Polymers decompose under shock loading
– Experimental evidence
EOS Modeling approaches
– SESAME
– Thermochemical

Detailed application to foams: polyurethane
Some hydrodynamic implications of EOS choices: epoxy
Adding kinetics: polysulfone
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Derivative discontinuities at
up∼3 km/s (typically P∼25
GPa)
Volume collapse in P-V

– Degree of collapse
correlates qualitatively with
chemical structure

– Interesting and important
stuff at lower up, won’t
discuss

LA-13006-MS, LANL (originally prepared in 1977)
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Phase transition (LANL, 1977)
– analogous to graphite→diamond
– “compression...is two-dimensional in nature” below the transition,

“more typical of a three-dimensional solid” above

Decomposition (LLNL, 1979)
– “..hydrocarbons at high pressure (&10 GPa) and high temperature

(&1000 K) dissociate into carbon in the diamond phase and hydrogen
in a condensed molecular phase”
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Experiments on polyethylene and
Teflon
Setup
– Single-shock, Mach compression
– Hermetically-sealed capsule

• Enabled recovery of soot and gases
• Mass spectrometry, XRD, TEM

Polyethylene results
– Polymer recovered at ∼20 GPa
– Gases and soot recovered 28-40 GPa

• Gases were >80% mol CH4 and H2

• Soot was neither graphite nor
diamond

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)
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Purely hydrostatic, no strength or viscoelasticity
3-part decomposition of free energy

F (ρ,T ) = φ(ρ) + Fion(ρ,T ) + Felec(ρ,T )

Methods to incorporate equilibrium phase boundaries

We apply this to just about everything

– High explosive products being the exception

With regards to polymers:

– Electronic part not that important ρ/ρ0 . 3
– Ionic models of Mie-Grüneisen form (variations on Debye)
– Cold curve extracted from fit to shock data
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Fit some shock data

Assume some characteristic
temperature

– Cold curve by subtraction

Potential problems:
– Structure present even at 0K
– Structure preserved to high T
– Completely reversible transition
Thermals often poorly
constrained
– Important for foams
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Decomposition products as mixture of fluids and bulk solids
– Each constituent has its own free energy model

• Fluids: spherical, pairwise interaction potential translated to free
energy with perturbation theory

• Solids: SESAME model

– Mixture rule required (non-unique)
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Decomposition products as mixture of fluids and bulk solids
– Each constituent has its own free energy model

• Fluids: spherical, pairwise interaction potential translated to free
energy with perturbation theory

• Solids: SESAME model

– Mixture rule required (non-unique)
Assume full thermodynamic (and thus, chemical) equilibrium
– Adjust concentrations until minimal free energy found and

stoichiometry preserved
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30% 50% 60% 75%

Shock data for polyurethane at 0-75% porosity
Thermochemical modeling above some threshold
– Threshold varies with porosity, unknown a priori
– Carbon as diamond for full density, as graphite for foams
– Only adjustable parameter is E0

Reactants were SESAME + P − α porosity model
– Only porous parameter is crush pressure, Pc

Dattelbaum, et al., J. Appl. Phys. 115, 174908 (2014)
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E0 of products adjusted to match data above transition
Reactant EOS calibrated to all solid data
Legacy EOS SESAME 7631 (shown in following)

Dattelbaum, et al., J. Appl. Phys. 115, 174908 (2014)
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Porous E0 same as for solid
– Good agreement with

highest points

30% porous
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Porous E0 same as for solid
– Good agreement with

highest points
Set Pc=16 kbar
Yields product locus to right of
reactants
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Porous E0 same as for solid
– Good agreement with

highest points
Set Pc=16 kbar
Yields product locus to right of
reactants
Experimental error bars should
probably be larger
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Porous E0 same as for solid
– Good agreement with

highest points
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reactants
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Approach makes qualitative
sense of the pattern
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Porous E0 same as for solid
– Good agreement with

highest points
Set Pc=16 kbar
Yields product locus to right of
reactants
Experimental error bars should
probably be larger
Approach makes qualitative
sense of the pattern
Transition threshold drops
dramatically with porosity
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Fredenburg TITANS thesis
(LA-CP-16-06822)
New products EOS 97607
Historical EOS
– 7603 includes structure in fit
– 7602 excludes structure from fit

Release experiment gives P and
its first two ρ derivatives (c2

S and G)

– Products give better cS (8%
error vs. 16% and 29%)

– G ok, better for higher P
– multiwave structure from 7603
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Hugoniot structure appears also
in the isentropes
– Release produces spurious

“back-reaction”
– Multiwave structure results
Reversibility issue
– Should we treat polymers

more like HE, or metals?
When do we clearly not care?

– Shocks below transition
– Shocks well above transition

Relevance dictated by strength of
shock and timescale of interest
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Using HE burn module in LANL’s xRage code
So far we’ve only tried an Arrhenius rate

R =
dλ
dt

= (1− λ)nνe(−Ta/T )

R = reaction rate

λ = mass fraction of products

n = reaction order (parameter)

ν = frequency factor (parameter)

Ta = activation temperature (parameter)
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What you get in HE

Embedded gauge data for PBX 9502
Gustavsen, et al., J. Appl. Phys. 99, 114907 (2006)
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What we’d like to get for polymers...

Embedded gauge data for phenylacetylene liquid
Dattelbaum & Sheffield, AIP Conf. Proc. 1426, 627 (2012)
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What we’d actually gotten for polymers (until very recently)...

Window data for carbon
phenolic/cyanate ester
First observation of multiwave
structure in polymers

Dattelbaum, et al., J. Appl. Phys. 116, 194308 (2014)



UNCLASSIFIED

Rate Model Calibration: Data

UNCLASSIFIED
Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

What we usually have for polymers...
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Using 1/(adiabatic
induction time) as proxy
for rate
For a given pair of EOS:
– Ta sets up range
– ν shifts laterally
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Pinput=22.1 GPa; transition starts ∼18.5 GPa

Qualitative features good, but experimental reaction signatures (P1
decay, P2 rise) much more subtle
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PDV at (reshock) interface with window
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PDV at (reshock) interface with window

increasing sample thickness→
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PDV at (reshock) interface with window

increasing sample thickness→

Simulation:
underestimates total P1
decay
exaggerates P1 variation
with thickness
P2 slow when thin, fast
when thick
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“Reaction Path” in Polysulfone
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P1 states relax along
reactant Hugoniot
All tracers ride P2 to
products Hugoniot
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Summary & Future Directions

Polymers decompose under shock loading
– up∼3 km/s, P∼25 GPa at full density
Threshold conditions drop dramatically as porosity increases
– Response may become anomalous

Products modeled reasonably well under assumption of full
thermodynamic equilibrium
Treating reactants and products as single material can produce
artifacts in hydrodynamic simulation
Ongoing
– Understanding the interaction of chemistry and flow
– Work on polyethylene, polysulfone, SX358, polyimide...
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Extra Slides
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Thermicity coefficients and detonability
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In order to produce a self-sustaining wave, a material must have a
positive thermicity coefficient

σ =

(
∂P
∂λ

)
V ,E

=
∆V
V
− Γ

c2 ∆H

σ = thermicity coefficient

λ = reaction progress variable

Γ = Grüneisen parameter

c = frozen sound speed

∆H = enthalpy (confusingly, also called reaction thermicity)

Exothermic decomposition does not guarantee detonation
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Setup for wave profile run
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Rate Model Calibration: Theory
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Adiabatic induction time for constant-volume burn

tad(T0) =
T 2

0

νTa(T1 − T0)
e(Ta/T0)

T0 = reactant temperature

T1 = product temperature

ν = frequency factor (parameter)

Ta = activation temperature (parameter)

In our case, these are Hugoniot temperatures

There’s a problem when reaction lowers temperature

Because T0 = T0(up), we’ll consider tad(up)

R. Menikoff, LA-UR-17-31024 (2017)


